

Realistic Evaluation Principles for Cross-document Coreference Resolution

Arie Cattan, Alon Eirew, Gabriel Stanovsky, Mandar Joshi and Ido Dagan

*SEM 2021

Cross-document Coreference Resolution

U.S President nominates new surgeon general: MacArthur "genius grant" fellow Regina Benjamin on the July 13, 2009. Obama emphasize his decision in "her extensive and distinguished career in medicine".

President Obama will name Dr. Regina Benjamin as U.S. Surgeon General on Monday in a Rose Garden announcement, later this morning.

News that Barack Obama may name Dr. Sanjay Gupta of Emory University and CNN as his Surgeon General has caused a spasm of celebrity reporting. CNN's management confirmed that Dr. Gupta had been approached by the Obama team on March 2009. The chief medical correspondent has declined comment.

Cross-document Coreference Resolution

U.S President <u>nominates</u> new surgeon general: MacArthur "genius grant" fellow Regina Benjamin on the July 13, 2009. Obama emphasize his <u>decision</u> in "her extensive and distinguished career in medicine".

President Obama will <u>name</u> Dr. Regina Benjamin as U.S. Surgeon General on Monday in a Rose Garden announcement, later this morning.

News that Barack Obama may <u>name</u> Dr. Sanjay Gupta of Emory University and CNN as his Surgeon General has caused a spasm of celebrity reporting. CNN's management confirmed that Dr. Gupta had been <u>approached</u> by the Obama team on March 2009. The chief medical correspondent has declined comment.

Applications of CD Coreference Resolution

- Multi-document summarization
- Multi-hop question answering
- Knowledge Base Construction
- Entity Linking

Related Work

- Iterative algorithm for joint event and entity coreference (Barhom et al., 2019)
- Follow-up improvement using a paraphrase corpus (Meged et al., 2020)
- More recent Transformer-based models (<u>Zeng et al, 2020</u>; <u>Caciularu et al.</u>, <u>2021</u>)
- Results > 80 CoNLL F1

Related Work

- Iterative algorithm for joint event and entity coreference (Barhom et al., 2019)
- Follow-up improvement using a paraphrase corpus (Meged et al., 2020)
- More recent Transformer-based models (<u>Zeng et al, 2020</u>; <u>Caciularu et al.</u>, <u>2021</u>)
- Results > 80 CoNLL F1

But downstream applications don't use these models, why??

- 1. Evaluating only on **gold** mentions
 - \rightarrow coreference resolution involves also mention detection

- 1. Evaluating only on **gold** mentions
 - \rightarrow coreference resolution involves also mention detection
- 2. Rewarding **singleton** prediction in coreference metrics

- 1. Evaluating only on **gold** mentions
 - \rightarrow coreference resolution involves also mention detection
- 2. Rewarding **singleton** prediction in coreference metrics
- 3. Sidestepping a major lexical ambiguity challenge

- 1. Evaluating only on gold mentions \rightarrow coreference resolution involves also mention detection
- 2. Rewarding **singleton** prediction in coreference metrics
- 3. Sidestepping a major lexical ambiguity challenge

Consider this question-answering example from Quoref (Dasigi et al., 2019)

Anna and Declan eventually make their way on foot to a roadside pub, where they discover the three van thieves going through Anna's luggage. Declan fights them, displaying unexpected strength for a man of his size, and retrieves Anna's bag.

Who does Declan get into a fight with?

Consider this question-answering example from Quoref (Dasigi et al., 2019)

Anna and Declan eventually make their way on foot to a roadside pub, where they discover the **three van thieves** going through Anna's luggage. Declan fights **them**, displaying unexpected strength for a man of his size, and retrieves Anna's bag.

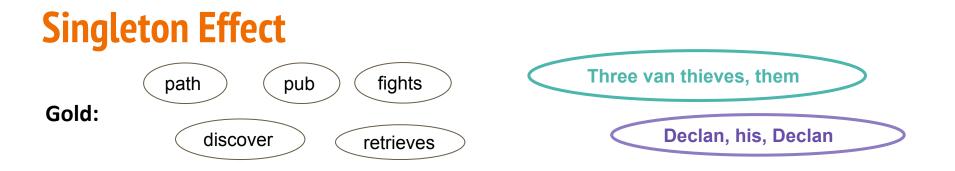
Who does Declan get into a fight with?

Consider this question-answering example from Quoref (Dasigi et al., 2019)

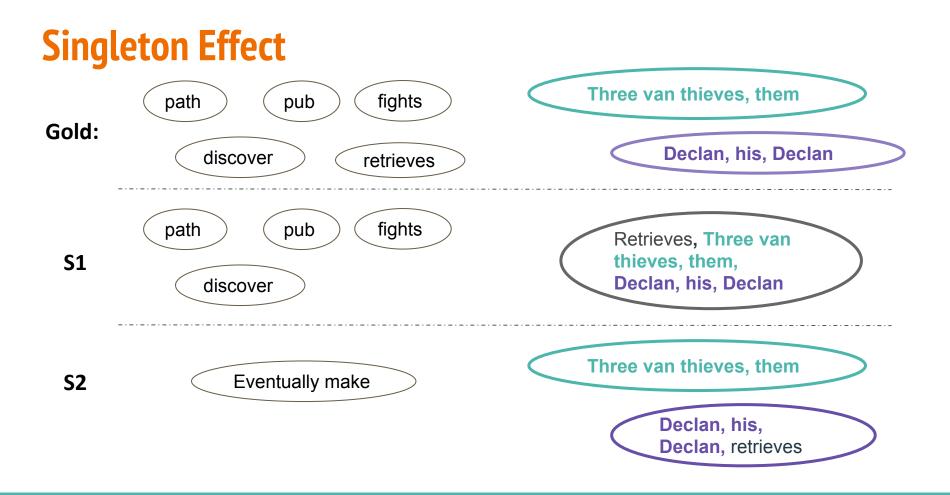
Anna and Declan eventually make their way on foot to a roadside pub, where they discover the **three van thieves** going through Anna's luggage. Declan fights **them**, displaying unexpected strength for a man of his size, and retrieves Anna's bag.

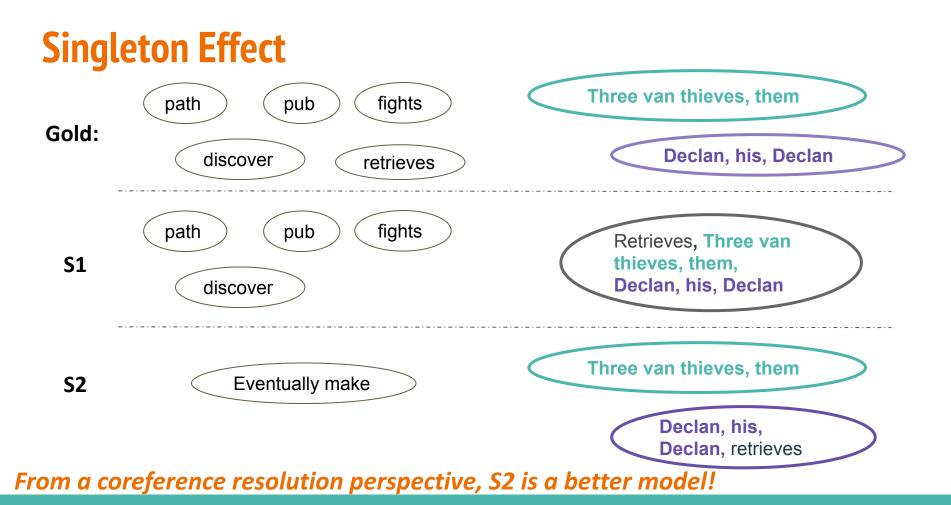
Who does Declan get into a fight with?

Three van thieves


Consider this question-answering example from Quoref (Dasigi et al., 2019)

Anna and Declan eventually make their way on foot to a roadside pub, where they discover the **three van thieves** going through Anna's luggage. Declan fights **them**, displaying unexpected strength for a man of his size, and retrieves Anna's bag.


Who does Declan get into a fight with?


Three van thieves

Downstream tasks leverage coreference **links** to bridge information across mentions

		MUC	B ³	CEAFe	LEA	CoNLL
With Singletons	$S1 \\ S2$	75.0 85.7	77.6 59.2		69.0 50.0	76.8 59.2
CoNLL-2012				44.4 90.0		57.5 86.5

Including singletons in coreference metrics may lead to counterproductive results for downstream tasks!

		MUC	B ³	CEAFe	LEA	CoNLL
With Singletons	S1	75.0	77.6	77.8	69.0	76.8
	S2	85.7	59.2	32.7	50.0	59.2
CoNLL-2012	S1	75.0	53.1	44.4	42.1	57.5
	S2	85.7	83.9	90.0	80.0	86.5

• Focusing the evaluation on links \rightarrow S2 gets higher results than S1 as expected

		MUC	B ³	CEAFe	LEA	CoNLL
With Singletons	S1	75.0	77.6	77.8	69.0	76.8
	S2	85.7	59.2	32.7	50.0	59.2
CoNLL-2012	S1	75.0	53.1	44.4	42.1	57.5
	S2	85.7	83.9	90.0	80.0	86.5

- Focusing the evaluation on $links \rightarrow S2$ gets higher results than S1 as expected
- Models are still penalized for wrongly **linking** singletons

		MUC	B ³	CEAFe	LEA	CoNLL
With Singletons	S1	75.0	77.6	77.8	69.0	76.8
	S2	85.7	59.2	32.7	50.0	59.2
CoNLL-2012	S1	75.0	53.1	44.4	42.1	57.5
	S2	85.7	83.9	90.0	80.0	86.5

- Focusing the evaluation on $links \rightarrow S2$ gets higher results than S1 as expected
- Models are still penalized for wrongly **linking** singletons

But singletons are still valuable

		MUC	B ³	CEAFe	LEA	CoNLL
With Singletons	S1	75.0	77.6	77.8	69.0	76.8
	S2	85.7	59.2	32.7	50.0	59.2
CoNLL-2012	S1	75.0	53.1	44.4	42.1	57.5
	S2	85.7	83.9	90.0	80.0	86.5

Decouple the evaluation of mention detection from coreference resolution

		MUC	B ³	CEAFe	LEA	CoNLL
With Singletons	S1	75.0	77.6	77.8	69.0	76.8
	S2	85.7	59.2	32.7	50.0	59.2
CoNLL-2012	S1	75.0	53.1	44.4	42.1	57.5
	S2	85.7	83.9	90.0	80.0	86.5

Decouple the evaluation of mention detection from coreference resolution

Mention detection (including singletons) is a **span detection** task \rightarrow Span F1

Coreference is a **linking** task \rightarrow CoNLL-2012 (without singletons)

		MUC	B ³	CEAFe	LEA	CoNLL
With Singletons	S1	75.0	77.6	77.8	69.0	76.8
	S2	85.7	59.2	32.7	50.0	59.2
CoNLL-2012 ~	S1	75.0	53.1	44.4	42.1	57.5
	S2	85.7	83.9	90.0	80.0	86.5

Coreference Results

	Recall	Precision	F1
S 1	100	100	100
S2	60.0	75.0	66.7

Mention detection Results

Decouple the evaluation of mention detection from coreference resolution

Mention detection (including singletons) is a **span detection** tasks \rightarrow Span F1

Coreference is a **linking** task \rightarrow CoNLL-2012 (without singletons)

- 1. Evaluating only on gold mentions \rightarrow coreference resolution involves also mention detection
- 2. Rewarding **singleton** prediction in coreference metrics
- 3. Sidestepping a major lexical ambiguity challenge

History of ECB+ – main benchmark

- 1. EventCorefBank (ECB) (Bejan and Harabagiu, 2008) Partial annotation of cross-document event coreference on 43 topics
- Extended ECB (EECB) (Lee et al., 2012)
 Exhaustive annotation, and adding entity coreference in ECB
- 3. ECB+ (Cybulska and Vossen, 2014)

Adding **subtopics** (+500 documents!) to challenge models with **lexical ambiguity** to mimic real use cases on a reasonable annotation task

ECB+ – Nomination as Surgeon General topic

U.S President <u>nominates</u> new surgeon general: MacArthur "genius grant" fellow Regina Benjamin on the July 13, 2009. Obama emphasize his <u>decision</u> in "her extensive and distinguished career in medicine".

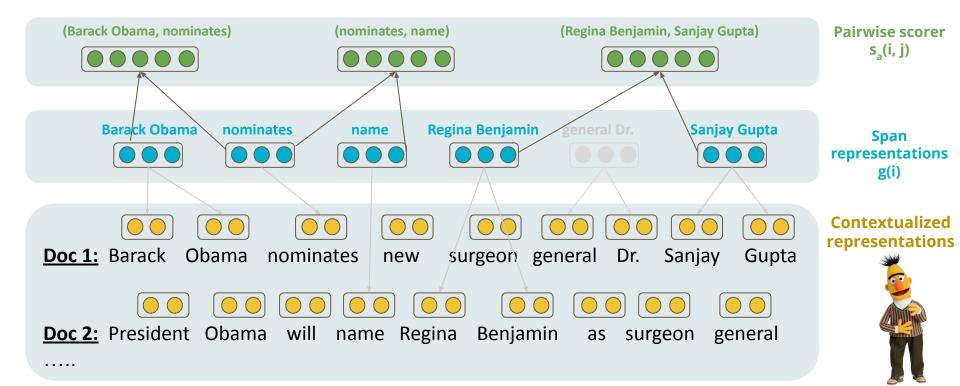
President Obama will <u>name</u> Dr. Regina Benjamin as U.S. Surgeon General on Monday in a Rose Garden announcement, later this morning.

Subtopic 1

News that Barack Obama may <u>name</u> Dr. Sanjay Gupta of Emory University and CNN as his Surgeon General has caused a spasm of celebrity reporting. CNN's management confirmed that Dr. Gupta had been <u>approached</u> by the Obama team on March 2009. The chief medical correspondent has declined comment.

Subtopic 2

- Each topic includes exactly two subtopics with short articles.
- Recent work apply a very simple document clustering that reconstruct original subtopics


- Each topic includes exactly two subtopics with short articles.
- Recent work apply a very simple document clustering that reconstruct original subtopics
- Bypassing ECB+ goals and sidestepping lexical ambiguity

- Each topic includes exactly two subtopics with short articles.
- Recent work apply a very simple document clustering that reconstruct original subtopics
- Bypassing ECB+ goals and sidestepping lexical ambiguity
- Models performance on realistic use cases is not assessed

- Each topic includes exactly two subtopics with short articles.
- Recent work apply a very simple document clustering that reconstruct original subtopics
- Bypassing ECB+ goals and sidestepping lexical ambiguity
- Models performance on realistic use cases is not assessed

We suggest that models will evaluate at the level of the entire topic without fine-grained subtopic clustering

Experiments – E2e model (Cattan et al., 2021)

	CoNLL F1
Barhom et al. (2019)	79.5
Cattan et al. (2021)	81

	CoNLL F1
Barhom et al. (2019)	79.5
Cattan et al. (2021)	81
— singletons	71.1 (-9.9)

	CoNLL F1
Barhom et al. (2019)	79.5
Cattan et al. (2021)	81
— singletons	71.1 (-9.9)
— topic level	62.0 (-9.1)

	CoNLL F1
Barhom et al. (2019)	79.5
Cattan et al. (2021)	81
— singletons	71.1 (-9.9)
— topic level	62.0 (-9.1)
- predicted mentions	48.6 (-13.4)

- We propose 3 principles to assess realistic performance
 - Predicted mentions
 - Decouple coreference evaluation
 - Evaluation at the entire topic level

- Applying our evaluation methodology on a SOTA model results on a drop of 32.4 CoNLL F1 (!)
- Large room for improvement under realistic conditions

Thanks!

Questions?

Arie Cattan github.com/ariecattan/coref arie.cattan.github.io